JAY DifferenceQnotient Givenfad TY exfam tf ^Y fox Xiii I s it X ^x hi xth ^X fCxth fCx faith fCx differencequotient Cxth ^H ⁿ of f at ^x with slopeof the redfine intervalleagle h a stecantlineto thegraph as ⁰ the secantline fg.ru oftax ^M theX yplane thepoints fCx and 4th foxth gets closerandcloser to thetangentline to thegraph off at the pointCxfcxD So we can use differencequotients for small h to compute the slopeof thistangent line the limit of the differencequotient as ^h so theslopeofthetangentline the derivativeof f at ^x Definition An empty set is ^a set that has no elements usually denoted by 3 4 EI A the set consistingof all studentsenrolled in this course

Define
$$
B =
$$
 the set of students from outerspace
= ϕ

$A \cup \phi = A$	for any set A :	
$A \cup \phi = A$	for any A .	
$\frac{A \cup B}{A \cup B}$	$\frac{A}{B \cup B}$	
$\frac{A}{B} \cup \frac{B}{B} \cup \frac{B}{B}$		
$A \subseteq B$	if $A \subseteq B$ but $A \neq B$	if $A \subseteq B$ but $A \neq B$
$\phi \cup A$	if $\phi \neq \phi$	
$\frac{Bx}{B}$	if $\frac{By}{B}$	
$\frac{By}{B}$	if $\frac{By}{B}$	

1.5 Composition of functions

Definition 1.5.1. Given functions $f(u)$ and $g(x)$, the composition of f and g, denoted by $(f \circ g)(x)$, is a function of *x* formed by substituting $u = g(x)$ for *u* in the formula of $f(u)$, $i.e.$

$$
(f \circ g)(x) = f(g(x)).
$$

In the following figure, the definition of composite function is illustrated as an assembly line in which raw input *x* is first converted into a transitional product $g(x)$ that acts as input in *f* machine uses to produce $f(q(x))$.

Lecture 1: Notation and Functions 1-12

Example 1.5.3. Suppose
$$
f(x) = \sqrt{(x - \bar{p})^2 + \frac{3}{(x - \bar{p})^3}}
$$
, find $g(u)$ and $h(x)$ such that $f(x) = g(h(x))$.

Solution. The form of the given function is

$$
f(x) = \Box^2 + \frac{3}{\Box^3}, \qquad \text{if } u = \gamma - 5 \quad \text{if } h(x) \quad \text{if } h(x) = \Box^2 + \frac{3}{\Box^3}, \qquad \text{if } u = \gamma - 5 \quad \text{if } h(x) = \frac{3}{\sqrt{3}} \quad
$$

where each box contains the expression $x - 5$. Thus $f(x) = g(h(x))$, where $=2(h(x))$

g(*u*) = *u*² + 3 *^u*³ and *^h*(*x*) = *^x* ⁵*.* ⌅ 0 O g can aYso change notation anddenote thevariableofthefunction ^g as

Definition 1.5.2. A difference quotient for a function $f(x)$ is a composition function of the form

$$
\Rightarrow \frac{f(x+h) - f(x)}{h}
$$

where *h* is a constant.

Difference quotients are used to compute the slope of a tangent line to the graph and define the derivative, a concept of central importance in calculus.

Example 1.5.4. Find the difference quotient of $f(x) = x^2 - 3x$.

Solution.

$$
\frac{f(x+h) - f(x)}{h} = \frac{[(x+h)^2 - 3(x+h)] - [x^2 - 3x]}{h}
$$

$$
= \frac{[x^2 + 2xh + h^2 - 3x - 3h] - [x^2 - 3x]}{h}
$$

$$
= \frac{2xh + h^2 - 3h}{h} = 2x + h - 3.
$$

Geometric interpretation: As slopes of secant lines to the graph of *f*.

 $h \to 0 \rightsquigarrow$ tangent lines. Slopes of tangent lines to the graph of $f \rightsquigarrow$ derivatives of f.

$$
= \mathfrak{g}(h(x)) = (g \circ h)(x)
$$

▬

1.6 Modeling in Business and Economics

Example 1.6.1. A manufacturer can produce dinning room tables at a cost of \$200 each. The table has been selling for \$300 each, and at that price consumers have been buying 400 tables per month. The manufacturer is planning to raise the price of the table and estimates that for each \$1 increase in the price, 2 fewer tables will be sold each month. What price corresponds to the maximum profit, and what is the maximum profit?

Solution. Let
$$
x
$$
 be the price.
\nProfit for one table $\frac{1}{2} \left\{ \frac{1}{200} \right\}$ and $\frac{1}{200}$
\nNumber of tables sold = $\frac{1}{200} - 2(x - 300) = 1000 - 2x$ *the sum part of the C* because in $\frac{1}{2}$ decreases in $\frac{1}{2}$.
\nTotal profit: $f(x) = \frac{(x - 200)(1000 - 2x)}{x - 200000} = \frac{-2x^2 + 1400x - 200000}{-2(x - 350)^2 + 45000}$

 $f(x)$ is maximized when the manufacturer charges \$350 for each table.

Question: How to find max/min for general functions? Calculus helps!

 \diagdown in tind this as ğ $\sqrt{}$ an application of differentiation

MATH1520 University Mathematics for Applications Spring 2021

Chapter 2: Limit

Learning Objectives:

- (1) Examine the limit concept and general properties of limits.
- (2) Compute limits using a variety of techniques.
- (3) Compute and use one-sided limits.
- (4) Investigate limits involving infinity and "*e*".

2.1 Limit of a function at one point

(Heuristic) "Definition" 2.1.1. If $f(x)$ gets "closer and closer" to a number *L* as *x* gets "closer and closer" to c from *both sides*, then L is called the limit of $f(x)$ as x approaches c , denoted by \sim

Remark. Limits are defined rigorously via " $\varepsilon - \delta$ " language.

Example 2.1.1. Let $f(x) := x + 1$. Find lim $x \rightarrow 1$ *f*(*x*)

When *x* approaches 1 from both sides, *f*(*x*) approaches 2. Therefore lim $x \rightarrow 1$ $f(x)=2.$ $= f(1)$

Chapter 2: Limit $lim_{x \to c} f(x) = f(c)$ $lim_{x \to c} f(x) = \int_{c}^{c} f(x) dx$ $lim_{x \to c} f(x) = \int_{c}^{c} f(x) dx$ only for "good functions late)

 μ_{i}

 fQ is

even though

Remark. 1. The table only gives you an intuitive idea, this is not a rigorous proof. 2. Don't think that the limit is always obtained by substituting $x = 1$ into $f(x)$. The limit only depends on the behavior of $f(x)$ near $x = 1$, but not at $x = 1$.

Example 2.1.2.
$$
f(x) = \begin{cases} x+1 & \text{if } x \neq 1, \\ \text{undefined} & \text{if } x = 1. \end{cases}
$$

When *x* approaches 1 from both sides, *f*(*x*) approaches 2. Therefore lim $x \rightarrow 1$ $f(x)=2.$ mm well-detined

Disregard the value of f at 1, the limit of $f(x)$ when x tends to 1 is always 2.

un defined. $\overline{2}$ when $x \neq 1$ $\frac{1}{2}$ χ el but f is diffused from the fanction x+1

Example 2.1.3. $f(x) = \begin{cases} x+1 & \text{if } x \neq 1, \\ 1 & \text{if } x = 1, \end{cases}$ 1 if $x = 1$.

		x 0.9 0.99 0.999 1 1.001 1.01 1.1	
		$f(x)$ 1.9 1.99 1.999 1 2.001 2.01 2.1	

When *x* approaches 1 from both sides, *f*(*x*) approaches 2. Therefore lim $x \rightarrow 1$ $f(x)=2.$

Proposition 1.

1. If $f(x) = k$ is a constant function, then

 $x \rightarrow 1$

 $x \rightarrow 3$

$$
\lim_{x \to c} f(x) = \lim_{x \to c} k = k.
$$

2. If
$$
f(x) = x
$$
, then

For instance, lim

For instance, lim

$$
x = 3.
$$

$$
\lim_{x \to c} f(x) = \lim_{x \to c} x = c.
$$

Proposition 2. (**Algebraic properties of limits,** +**,,**⇥**,** *÷*)

 $9=9.$

If
$$
\lim_{x \to c} f(x)
$$
 and $\lim_{x \to c} g(x)$ exist (very important!), then
\n
$$
\lim_{x \to c} f(x) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)
$$
\n
$$
\lim_{x \to c} f(x) = \lim_{x \to c} f(x) - \lim_{x \to c} g(x)
$$
\n
$$
\lim_{x \to c} f(x)g(x) = \lim_{x \to c} f(x) - \lim_{x \to c} g(x)
$$
\n
$$
\lim_{x \to c} f(x) = k \lim_{x \to c} f(x)
$$
for any constant k
\n
$$
\lim_{x \to c} f(x) = \lim_{x \to c} f(x) \quad \text{for any constant } k
$$
\n
$$
\lim_{x \to c} f(x) = \lim_{x \to c} f(x) \quad \text{for any constant } k
$$
\n
$$
\lim_{x \to c} f(x) = \lim_{x \to c} f(x) \quad \text{if } \lim_{x \to c} g(x) \neq 0.
$$
\n
$$
\lim_{x \to c} f(x) = \lim_{x \to c} f(x) \quad \text{if } \lim_{x \to c} g(x) \neq 0.
$$
\n
$$
\lim_{x \to c} f(x) = \lim_{x \to c} f(x) \quad \text{if } \lim_{x \to c} f(x) = \
$$

Example 2.1.4. Compute the following limits:

1.
$$
\lim_{x \to 1} (x^{3} + 2x - 5)
$$

\n2.
$$
\lim_{x \to 2} \sqrt{4x^{2} - 3}
$$

\n3.
$$
\lim_{x \to -2} \sqrt{4x^{2} - 3}
$$

\nSolution.
\n1.
$$
\lim_{x \to 1} (x^{3} + 2x - 5) = \lim_{x \to 1} x^{3} + \lim_{x \to 1} 2x - \lim_{x \to 1} 5 = 1^{3} + 2 \cdot 1 - 5 = -2.
$$

\n2.
$$
\lim_{x \to 2} \frac{x^{4} + x^{2} - 1}{x^{2} + 5} = \frac{\lim_{x \to 2} (x^{4} + x^{2} - 1)}{\lim_{x \to 2} (x^{2} + 5)} = \frac{\lim_{x \to 2} x^{4} + \lim_{x \to 2} x^{2} - \lim_{x \to 2} 1}{\lim_{x \to 2} x^{2} + \lim_{x \to 2} 5} = \frac{19}{9}.
$$

\n3.
$$
\lim_{x \to -2} \sqrt{4x^{2} - 3} = \sqrt{\lim_{x \to -2} (4x^{2} - 3)} = \sqrt{\lim_{x \to -2} 4x^{2} - \lim_{x \to -2} 3} = \sqrt{16 - 3} = \sqrt{13}.
$$

Exercise 2.1.1*.* Compute the following limit:

$$
\lim_{x \to 1} \left(x^2 - \frac{3x}{x+5} \right)
$$

Example 2.1.5. (**Cancelling a common factor**) Find the limit

$$
\lim_{x \to 1} \frac{x^2 - 1}{x^2 - 3x + 2}.
$$

Solution. We can't directly use property of division of limit because the denominator lim $\lim_{x\to 1} (x^2 3x + 2 = 1^2 - 3 \times 1 + 2 = 0.$

$$
\lim_{x \to 1} \frac{x^2 - 1}{x^2 - 3x + 2} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{(x - 1)(x - 2)}
$$

$$
= \lim_{x \to 1} \frac{(x - 1)(x + 1)}{(x - 1)(x - 2)}
$$

$$
= \lim_{x \to 1} \frac{x + 1}{x - 2}
$$

$$
= \frac{1 + 1}{1 - 2} = -2.
$$

 \blacksquare

 \blacksquare